Hawkes Process Memory RNN Invited talk for: amazon alexa

by: Denis Kazakov^a advisor: Michael Mozer^a worked with: Rob Lindsey^b

!*University of Colorado, Boulder* "*Imagen Technologies*

Outline

- 1. Motivation:
	- 1. Inductive bias
	- 2. Sequence processing domain overview
- 2. Prerequisites on theory
- 3. Building the model & intuition
- 4. Results & analysis

Inductive bias in machine learning: CNN

Music selection Text messaging Online postings

Inductive bias in machine le event sequences

- CNN over time domain (Cui et. al.) poor scaling timescales (milliseconds vs days).
- RNN with time as input feature $-$ time is use inductive bias. Potentially too flexible.
- Probabilistic processes $-$ time built into the r feature learning ability.

Merge deep learning feature learning probabilistic process's continuous tin

Motivation: Time Scales & Human Memory Decay

Point Processes

Homogeneous Poisson Process: Intensity: $h(t) = \lambda$ Time between arrivals: $X \sim Exp(\lambda)$ Expected number of event: $E[X] =$! λ **Nonhomogeneous Poisson Process:** Intensity is a function of time.

Hawkes Process

A point process … with a twist: Self excitatory, conditional intensity function with an exponential decay:

$$
h(t) = \mu + \alpha \sum_{t_j < t} e^{-\gamma (t - t_j)}
$$

 μ – baseline intensity α – "jump" rate γ – decay rate

Expectation of the Intensity

$$
h(t) = \mu + \alpha \sum_{t_j < t} e^{-\gamma(t - t_j)} \left| \lim_{t \to \infty} \mathbf{E}[h(t)] = \frac{\mu}{1 - \frac{\alpha}{\gamma}}
$$
\n
$$
\alpha - \text{"jump" rate}
$$
\n
$$
\gamma - \text{decay rate}
$$

Takeaway: given
$$
\mu
$$
, for $i, j \in N$: if $\frac{\alpha_i}{\gamma_i} = \frac{\alpha_j}{\gamma_j} = const$,

$$
\lim_{t \to \infty} E[h_i(t)] = \lim_{t \to \infty} E[h_j(t)]
$$

Hawkes Process Divergence

Controlling a Hawkes Process

• $\alpha < \gamma$ or $\alpha_i = \alpha_0 \gamma_i$, γ_i is any rate

Exact Simulation of Hawkes Process

Conditional intensity function:
$$
h(t) = \mu + \alpha \sum_{t_j < t} e^{-\gamma (t - t_j)}
$$

Initialize: 1.

$$
h_0=\mu, \quad t_0=0 \quad, \, \Delta t_k \equiv t_k - t_{k-1}
$$

2. Decay the intensity with each event:

$$
h_k = \mu + e^{-\gamma \Delta t_k} (h_{k-1} - \mu) + \alpha \gamma x_k, \quad \text{where } x_k = \begin{cases} 1, & \text{event occurs} \\ 0, & \text{else} \end{cases}
$$

3. Probability of the next event x_k occurring after the current time - t_{k-1} within the time window of Δt . $Z_k(\Delta_t)$

$$
P(t_k \le t_{k-1} + \Delta t | t_{1:k-1}) = 1 - P(t_k > t_{k-1} + \Delta t | t_{1:k-1}) = 1 - e^{-\int_0^{\Delta t} h_{k-1} dt}
$$

$$
= 1 - e^{-\frac{(h_{k-1} - \mu)(1 - e^{-\gamma \Delta t})}{\gamma}} - \mu \Delta t
$$

$$
(5)
$$

In music. You heard a catchy song, then: 1) Going on a binge immediately and forget about it

2) Discover your new favorite artist to listen for weeks on end

- Approximate with discrete values on a log-scale: $\gamma_i \in [\gamma_1, \gamma_2, ..., \gamma_s]$
- Simulate S Hawkes processes

 $h_{0,i} = \mu.$ $history_i \equiv (x_i, t_i)$ defines the events and their respective times. $P(\gamma_i) = \frac{1}{S}$ - initial belief is uniform across all γ 's.

$$
C_{k,i} \equiv P(\gamma_i | history_{1:k}) \qquad H_{k,i}(\Delta t_k) \equiv \mu + e^{-\gamma_i \Delta t_k} (h_{k-1,i} - \mu)
$$

$$
Z_{k,i}(\Delta t) \equiv P(t_k \ge t_{k-1} + \Delta t | t_{1:k-1})
$$

 $P(\gamma_i | history_{1:k}) \sim P(history_k | history_{1:k-1}, \gamma_i) P(\gamma_i | history_{1:k-1})$ $\sim H_{k,i}(\Delta t_k)^{x_k}Z_{k,i}(\Delta t_k)C_{k-1,i}$

HPM Model (Plain Hawkes process or "1-to-1")

Where:

 x - one-hot embedding of the sequence element $P(x) = W_{in}x$ - input into HPM cells, W_{in} , $W_{out} = IdentityMatrix$, $W_{rec}, b_{rec}, b_{out}, bin = Zeros,$ $Act-n = normalization of output.$

What event happened...?

Don't know timescales -> Infer them Don't know if an event happened -> ? $h_{k,i} = \mu + e^{-\gamma_i \Delta t_k} (h_{k-1,i} - \mu) + \alpha \gamma_i x_k$, where $x_k = \begin{cases} 1, & \text{event occurs} \\ 0, & \text{else} \end{cases}$ $P(\gamma_i | history_{1:k}) \sim H_{k,i}(\Delta t_k)^{x_k} Z_{k,i}(\Delta t_k) C_{k-1,i}$ **Marginalize over Event probability** $h_{k,i} = \mu + e^{-\gamma_i \Delta t_k} (h_{k-1,i} - \mu) + \alpha \gamma_i P(x_k)$ $P(\gamma_i | history_{1:k}) \sim \sum P(x_k)H_{k,i}(\Delta t_k)^{x_k}Z_{k,i}(\Delta t_k)C_{k-1,i}$ $x_k \in \{0,1\}$

HPM Model Formulation

- 1. Initialize: $\gamma_i \in [\gamma_1, \gamma_2, ..., \gamma_S], h_{0,i} = \mu, c_{0,i} = \frac{1}{S}$
- 2. Event occurrence: $P(x_k) = f(input_k)$
- 3. Update time-scale posterior $C_{k,i} = \sum_{x_k \in \{0,1\}} P(x_k) \frac{H_{k,i}(\Delta t_k)^{x_k} Z_{k,i}(\Delta t_k) C_{k-1,i}}{\sum_i H_{k,i}(\Delta t_k)^{x_k} Z_{k,i}(\Delta t_k) C_{k-1,i}}$
- 4. Update intensity: $h_{k,i} = H_{k,i}(\Delta t_k) + \alpha \gamma_i P(x_k)$
- 5. Cell's output to predict event at Δt_{k+1} and for recurrent information for next step: $y_k(\Delta t_{k+1}) = \sum_{i \in S} C_{k,i} Z_{k+1,i}(\Delta t_{k+1})$

HPM Model ("1-to-all")

Where:

 x - one-hot embedding of the sequence element, $P(x) = W_{in}x$ - input into HPM cells, W_{in} , W_{out} , W_{rec} , b_{in} , b_{out} , $brec$ - Normal Distributions,

$$
Act-n = softmax of output.
$$

 $f = -$ (III \sim 1 II l 1 l) 3. Update time-scale posterior (using (10)) $C_{k,i} = \sum_{x_k \in \{0,1\}} P(x_k) \frac{H_{k,i}(\Delta t_k)^{x_k} Z_{k,i}(\Delta t_k) C_{k-1,i}}{\sum_{i} H_{k,i}(\Delta t_k)^{x_k} Z_{k,i}(\Delta t_k) C_{k-1,i}}$

4. Update intensity: $h_{k,i} = H_{k,i}(\Delta t_k) + \alpha \gamma_i P(x_k)$

HPM vs. LSTM

- For LSTM time information is just another input.
- For HPM time information is part of its operating memory.

Continuous Time – GRU (CT-GRU)

- Same decay mechanism as HPM.
- Same multiscale inference, but no longer Bayesian.

CT-GRU (explicit time) vs. GRU (implicit time)

What could be happening?

- 1) GRU/LSTM are so robust that the cells can always implicitly learns how to work with time information. Whereas, HPM just learns the same information explicitly.
- 2) We are not giving tasks where time information is complex enough.

Fin