Lunch & Learn:

features in convolutional neural nets

presentation by: Denis Kazakov

Rough Notes (read before looking at slides)

Slides

Key points

I am going to refer to brain's analogies and how humans learn purely for metaphorical purposes. I am not making any claims whatsoever that the two are anyhow identical

0. What did I actually work on

Road Lane classifier - too small of a dataset - noticed that it learned form context, not from roads

Traffic Light detectors - pipeline -

got to learn DNN's architectures, spark

concept of fusion

1. Lack of data => retrain

- we have to learn how to communicate what we are looking for and in images it's hard

imaging being born again and seeing a bunch of images of the world without knowing what the world is. It's hard to learn anything

- introducing new information as a way to compensate for lack of data

* eventually we are trying to teach DNN about object's invariance (we learn it by seeing world in 3d)

multiple loss functions

augmentations

basic

noise addition (read that paper)

- features are real

analogy to regression at each layer

about how 2 nets have partially distributed clusters of neurons in each layer

- pre-training as a way to transfer those features, should be generic - can't always rely on truth generation

introduce deep dreams and how steepest ascent works

show what the filters catch

show filters of not pertained -> hmmm (suspish) -> compare to large data basis -> hmmm

show examples of pertained and not

Conclusion: training from scratch always isn't easy. Too much data dependency (especially if there is a way to avoid it, worth exploring)all those features - are a complex nonlinear basis. intuitively whatever basis was found for 5mil images is more uniform for "seeing" that the basis it would find fro 50000 images

2. Doubtfulness as a job necessity

- overfitting isn't easy to catch

potential addition: pipeline to visualize network before using it in production.

if your test/val set isn't independent enough, you won't see it in the plot.

Ex: pertained model tested worse than not pertained. that's uncommon but just looking at the number doesn't tell us anything.

segway into adversarial networks?

3. Sidetones & thoughts on the field:

- adversarial networks - have smth <=> relation to manifold theory?

- NN have many equivalent local minimas

Agenda

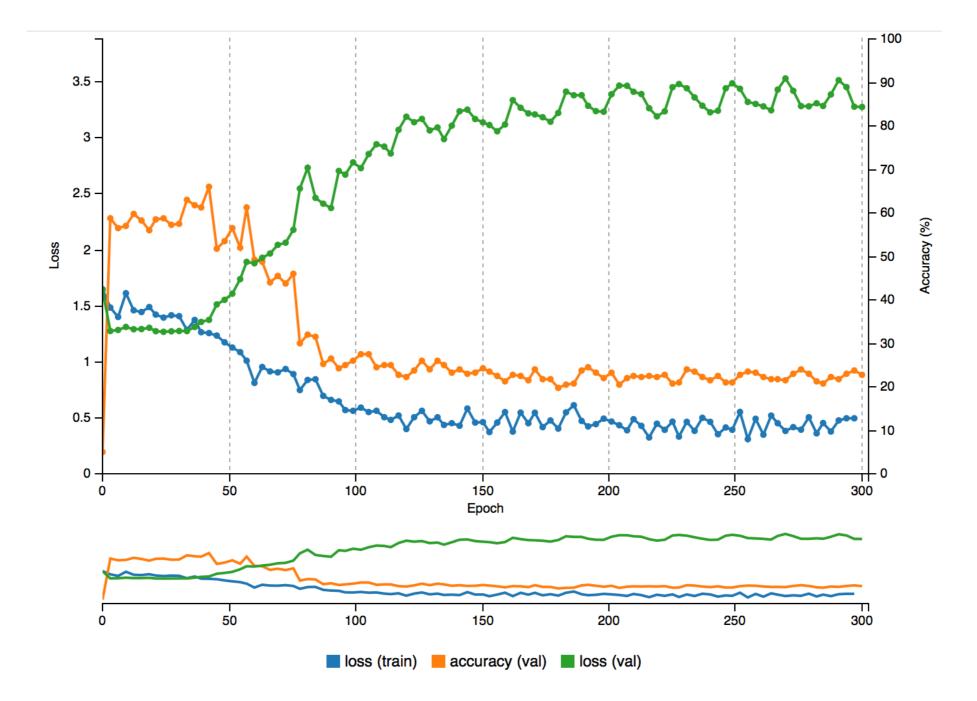
My summer experience, things I did
 Addressing the problem of insufficient data
 Transferring features in DNN
 Visualizing layer maximization

Summer Internship

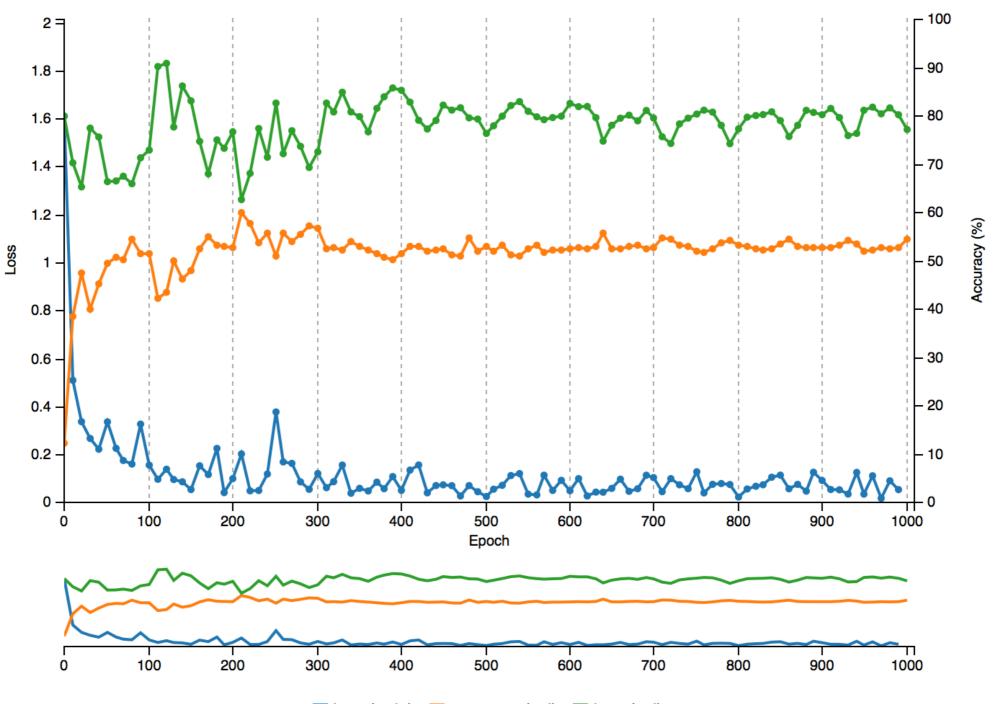
- 1) Road lane classifier
- 2) Traffic light object detector

Road Lane Classifier

Using standard AlexNet



Using pre-trained DNN



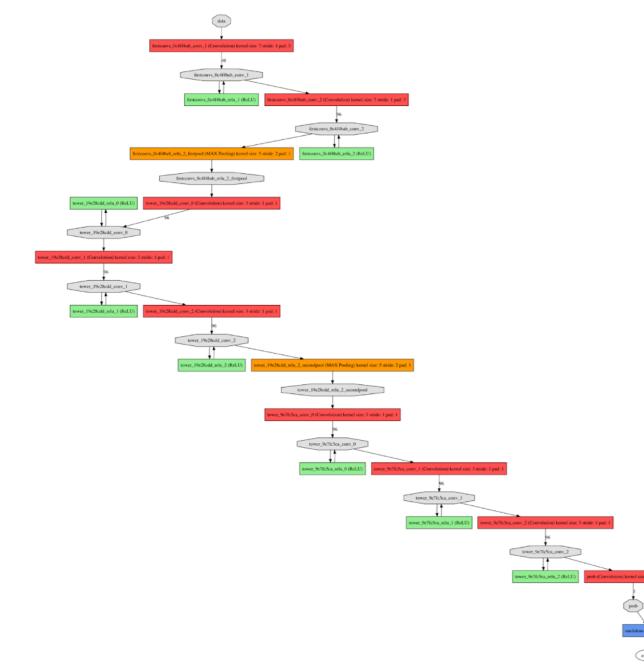
loss (train) accuracy (val) loss (val)

Conclusion on Road Lanes

Learned context, but didn't care about the road lanes themselves

Traffic Light Detector

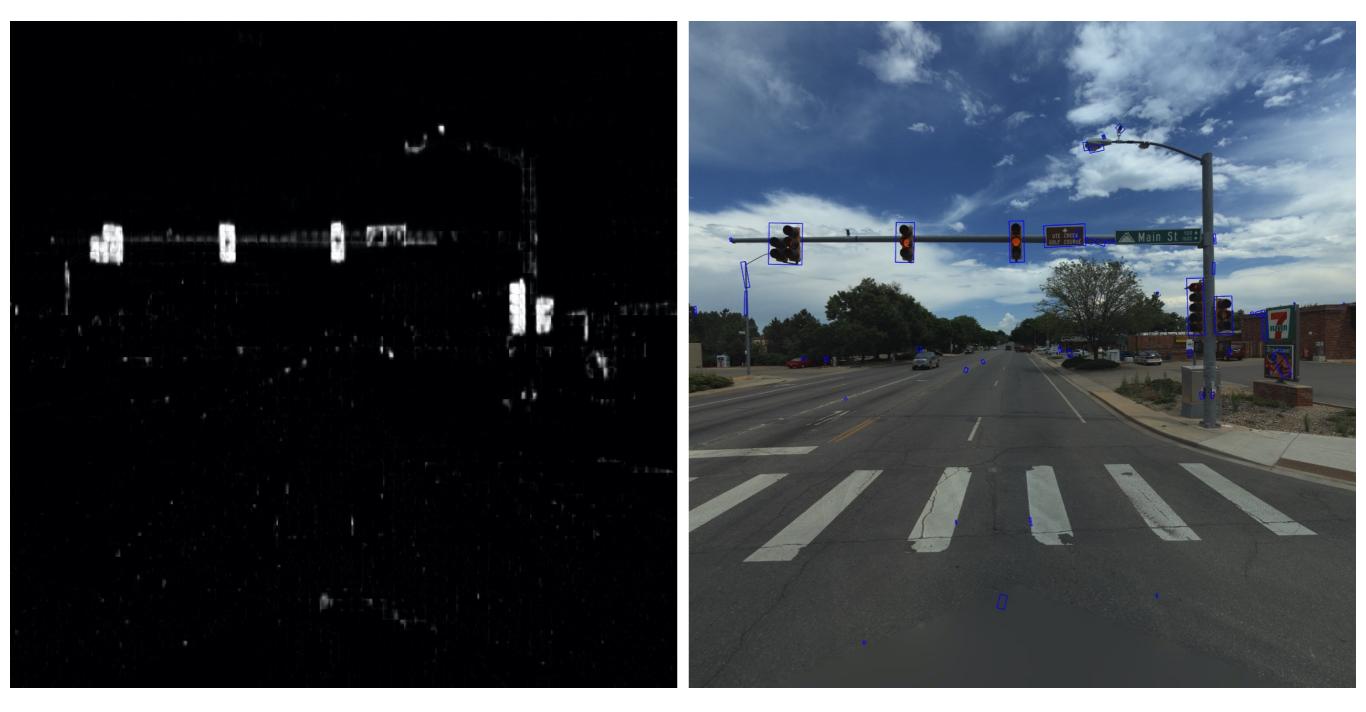
Simple detector: architecture



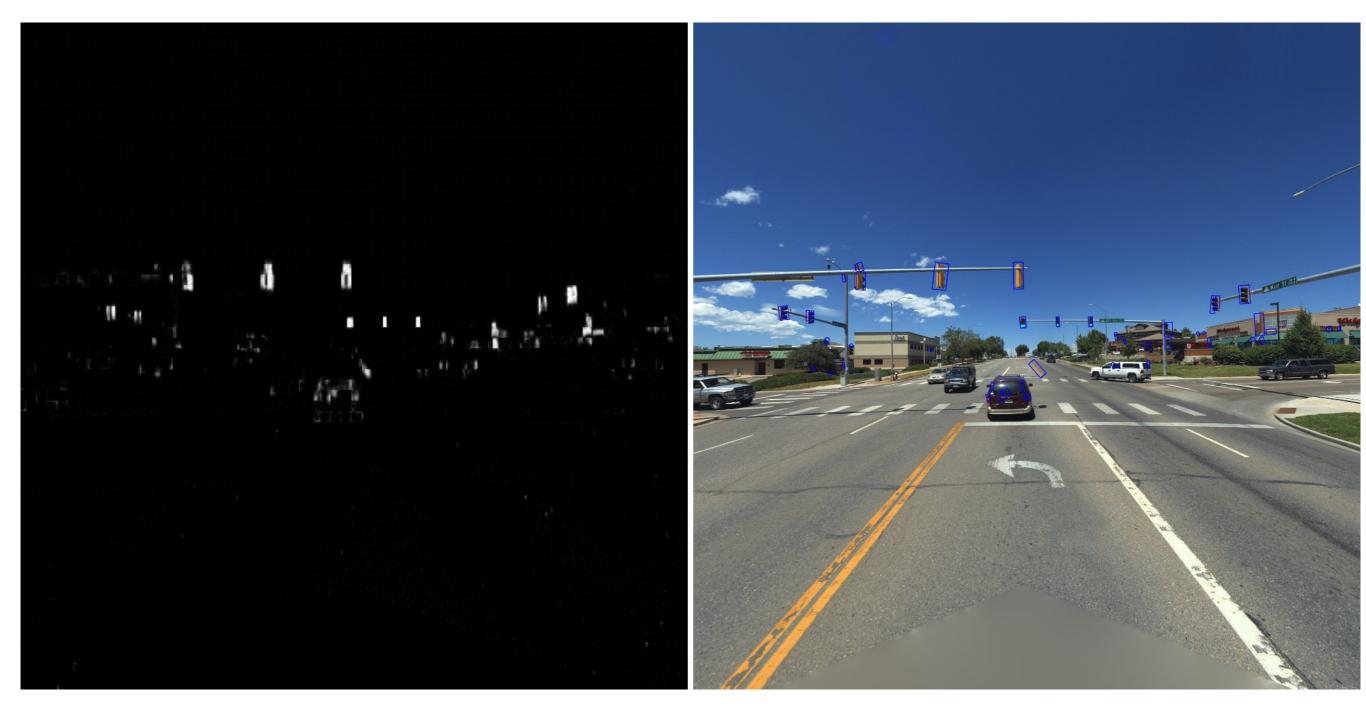
input image —→heat map

A. 2 CONV (7x7, stride 1)
B. 1POOL(5x5, stride 2)
C. 3 CONV (3x3, stride 1)
D. 1 POOL (5x5, stride 2)
E. 3 CONV (3x3, stride 1)
F. 1 heat map

Sample response (close distance)



Sample response (medium distance)



Sample response (far distance)

(deleted for IP protection)

Summer Conclusion

1) Learned Spark

2) Learned industry deep learning practices

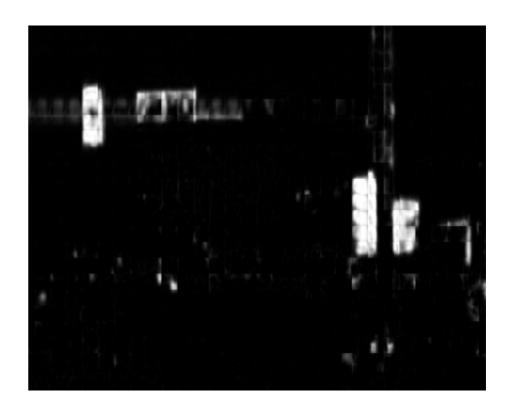
3) Read a ton of papers and learned a ton about neural nets

Lunch & Learn

Training DNN is hard

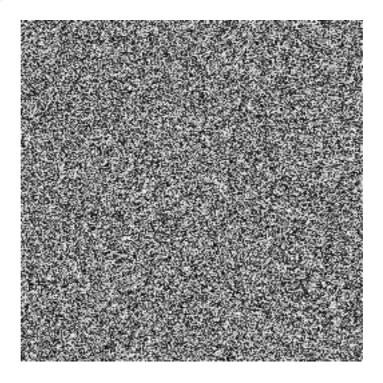
randomly initialized filters

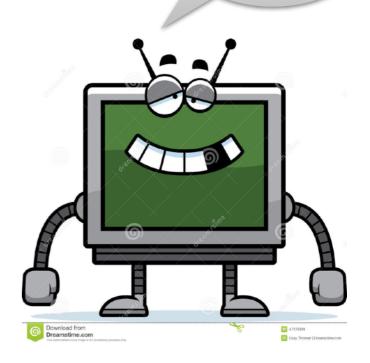
sensible interpretation of images



Training DNN is hard

Here, you see a traffic light





Okay...

Invariance in objects

Creating more information

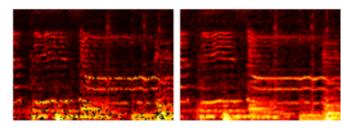
Two ways to teach invariance:

- 1) show examples from different contexts where something we are interested in stays constant
- 2) artificially 'augment' data to simulate different context

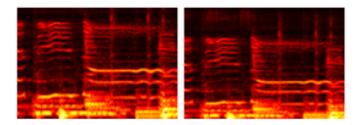
Data augmentation in images

Random(

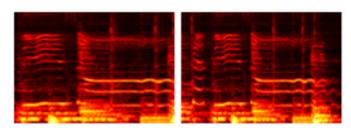
Crop, Scale, Sheer, Stretch, Flip, Noise)



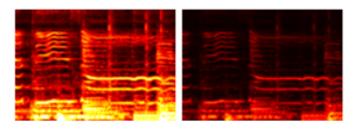
(c) Dropout and Gaussian noise.



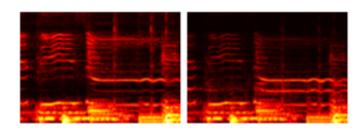
(d) Pitch shift of +/-20%.



(e) Time stretch of +/-20%.



(f) Loudness of +/-10 dB.



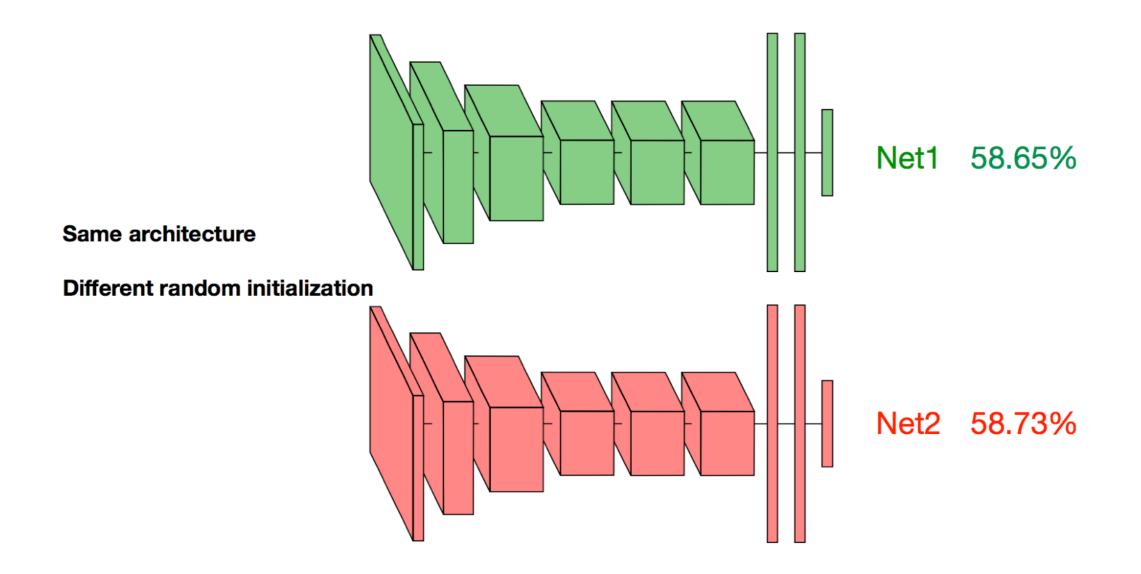
(g) Random frequency filters.

Data augmentation in sound

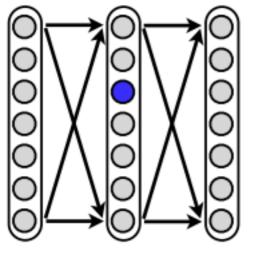
CONVERGENT LEARNING: DO DIFFERENT NEURAL NETWORKS LEARN THE SAME REPRESENTATIONS?

Yixuan Li¹*, Jason Yosinski¹*, Jeff Clune², Hod Lipson³, & John Hopcroft¹ ¹Cornell University ²University of Wyoming ³Columbia University {yli,yosinski,jeh}@cs.cornell.edu jeffclune@uwyo.edu, hod.lipson@columbia.edu

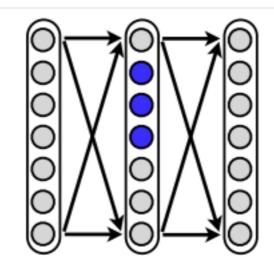
Features



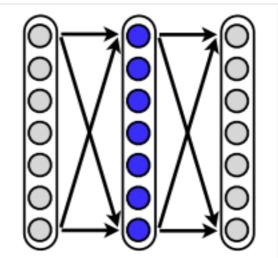
Which one is it?



Local?



Partially-Distributed?



Distributed?

Measuring correlation & mutual information

i,j - units, I - layer, X - series of activation values

Standard deviation: σ Within-net correlation: $c_{l,i}^{(n)}$ Between-net correlation: $c_{l,i}^{(n)}$

Mean:

Mutual information:

$$\mu_{l,i}^{(n)} = \mathbb{E}[X_{l,i}^{(n)}]$$

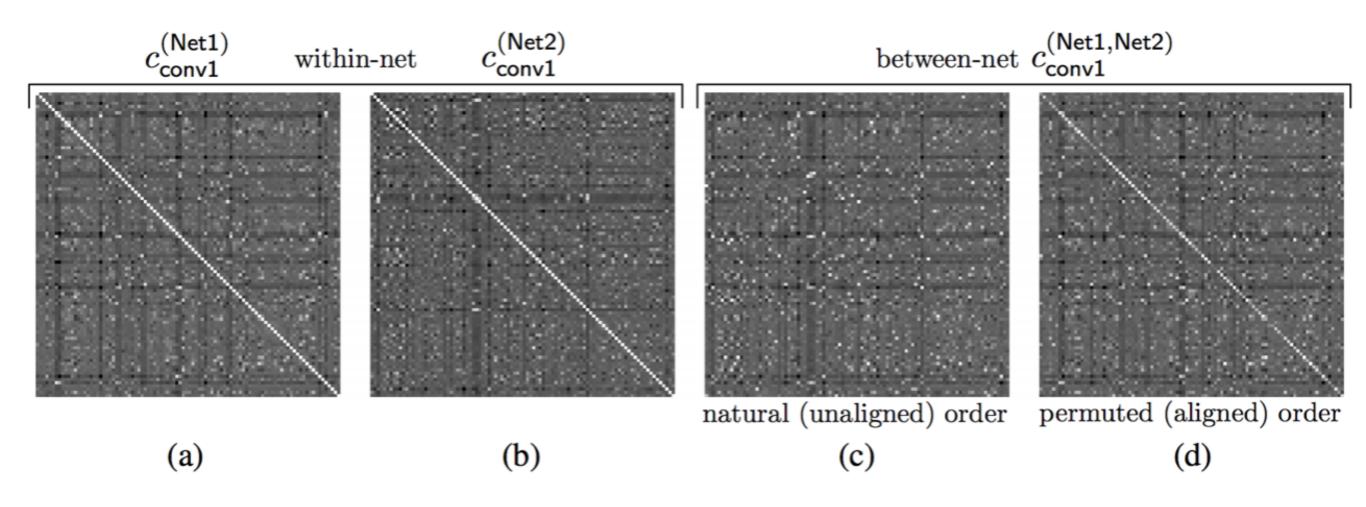
$$\sigma_{l,i}^{(n)} = \sqrt{(\mathbb{E}[(X_{l,i}^{(n)} - \mu_{l,i}^{(n)})^{2}])}$$

$$c_{l,i,j}^{(n)} = \mathbb{E}[(X_{l,i}^{(n)} - \mu_{l,i}^{(n)})(X_{l,j}^{(n)} - \mu_{l,j}^{(n)})]/\sigma_{l,i}^{(n)}\sigma_{l,j}^{(n)}$$

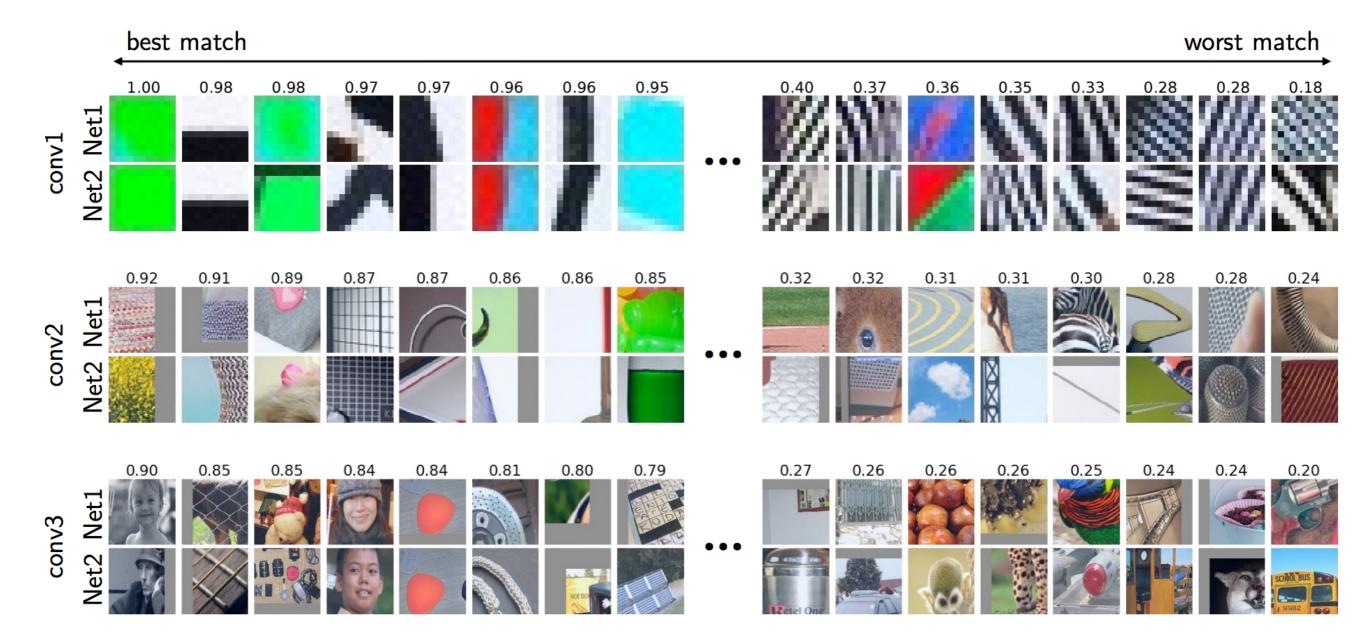
$$c_{l,i,j}^{(n,m)} = \mathbb{E}[(X_{l,i}^{(n)} - \mu_{l,i}^{(n)})(X_{l,j}^{(m)} - \mu_{l,j}^{(m)})]/\sigma_{l,i}^{(n)}\sigma_{l,j}^{(m)}$$

$$I\left(X_{l,i}^{(n)}; X_{l,j}^{(m)}\right) = \sum_{a \in X_{l,i}^{(n)}} \sum_{b \in X_{l,j}^{(m)}} p(a,b) \log\left(\frac{p(a,b)}{p(a)p(b)}\right),$$

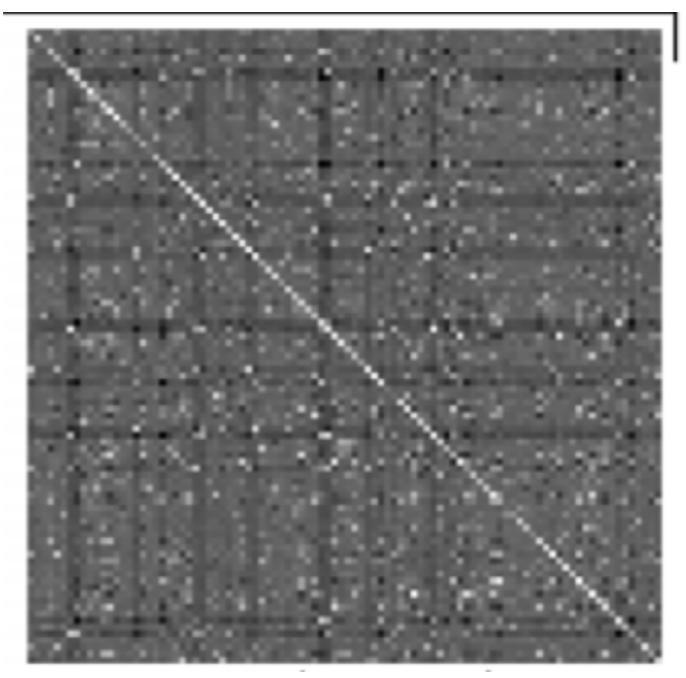
Neuron - Neuron Correlation

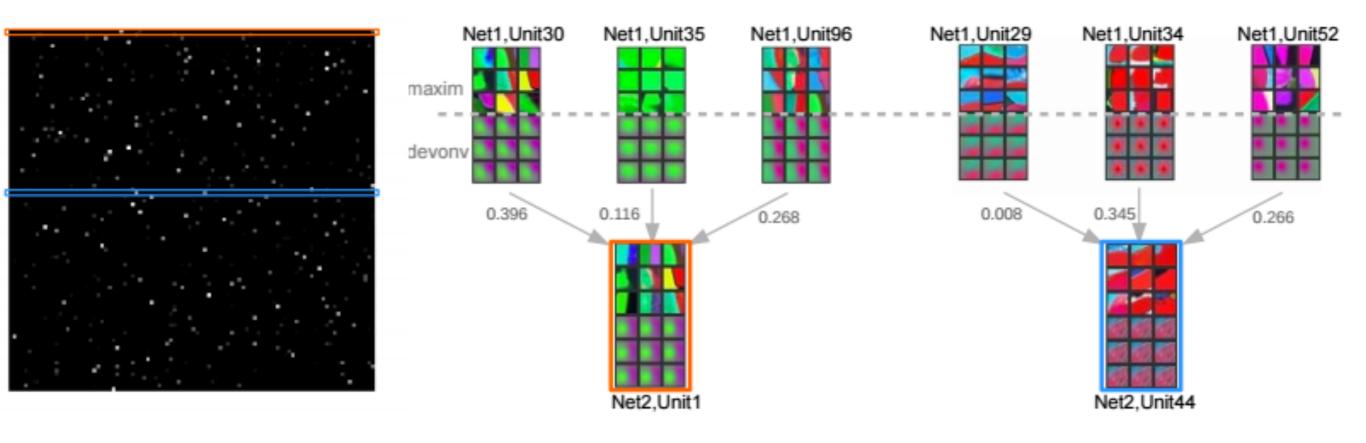


Common filters - chosen greedily

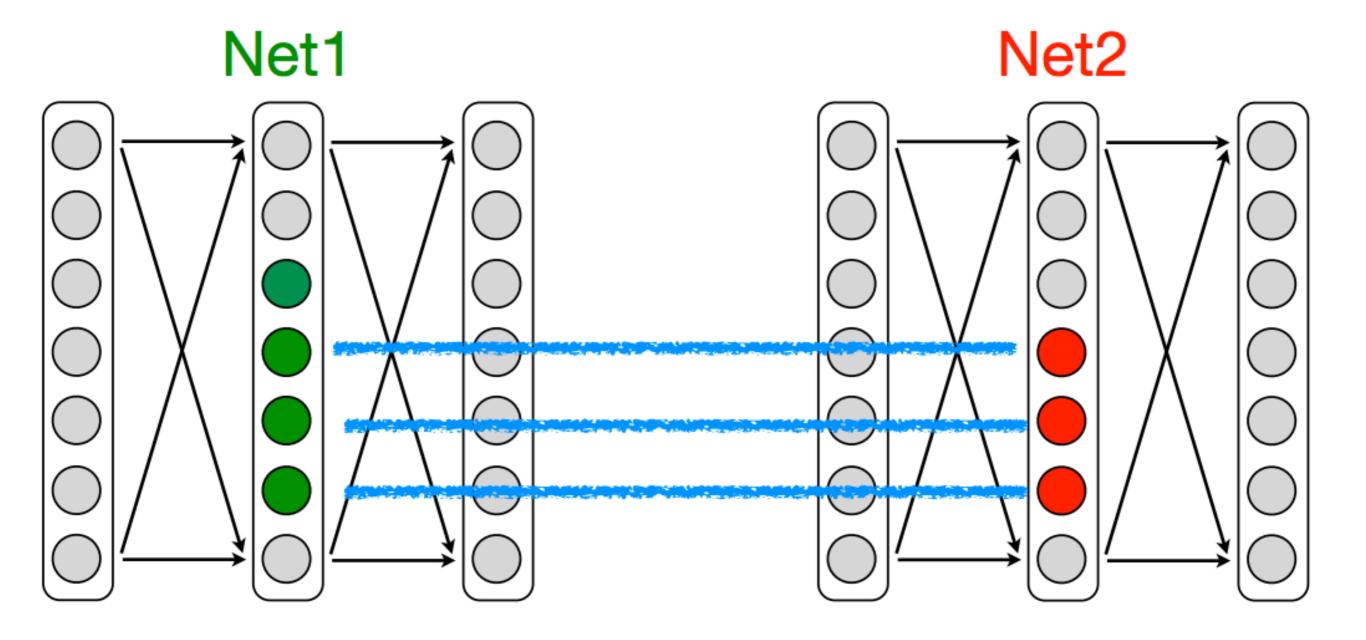


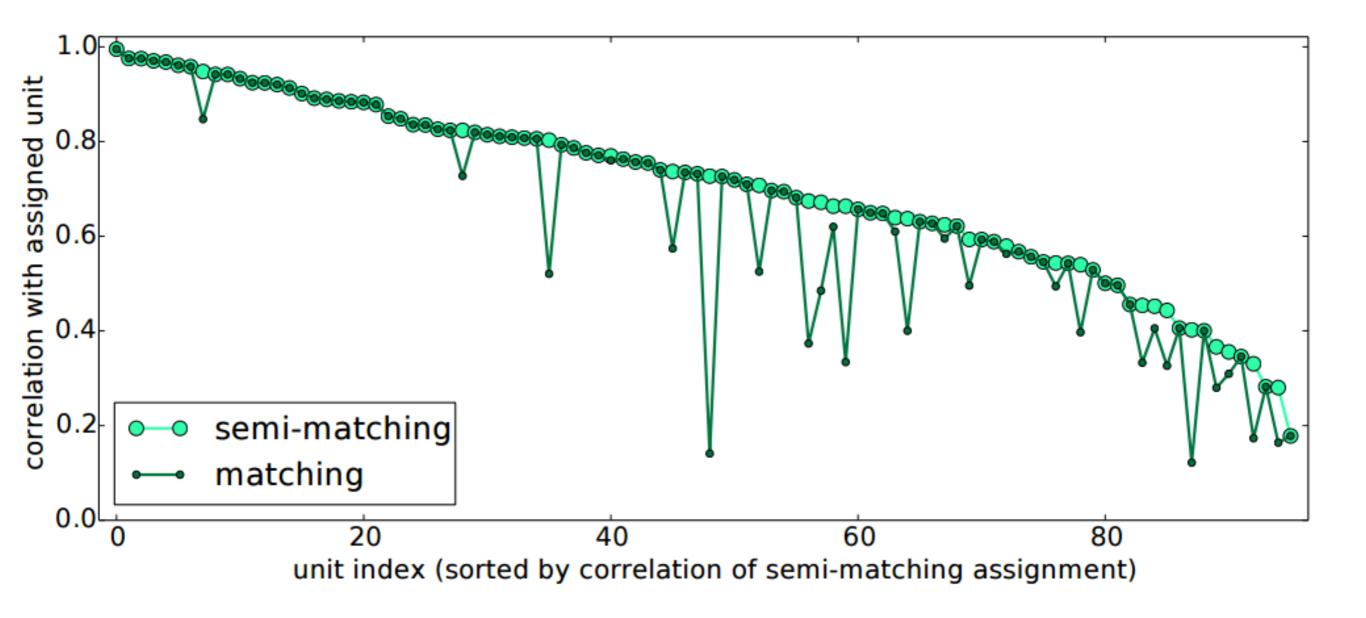
What about non diagonal entries?



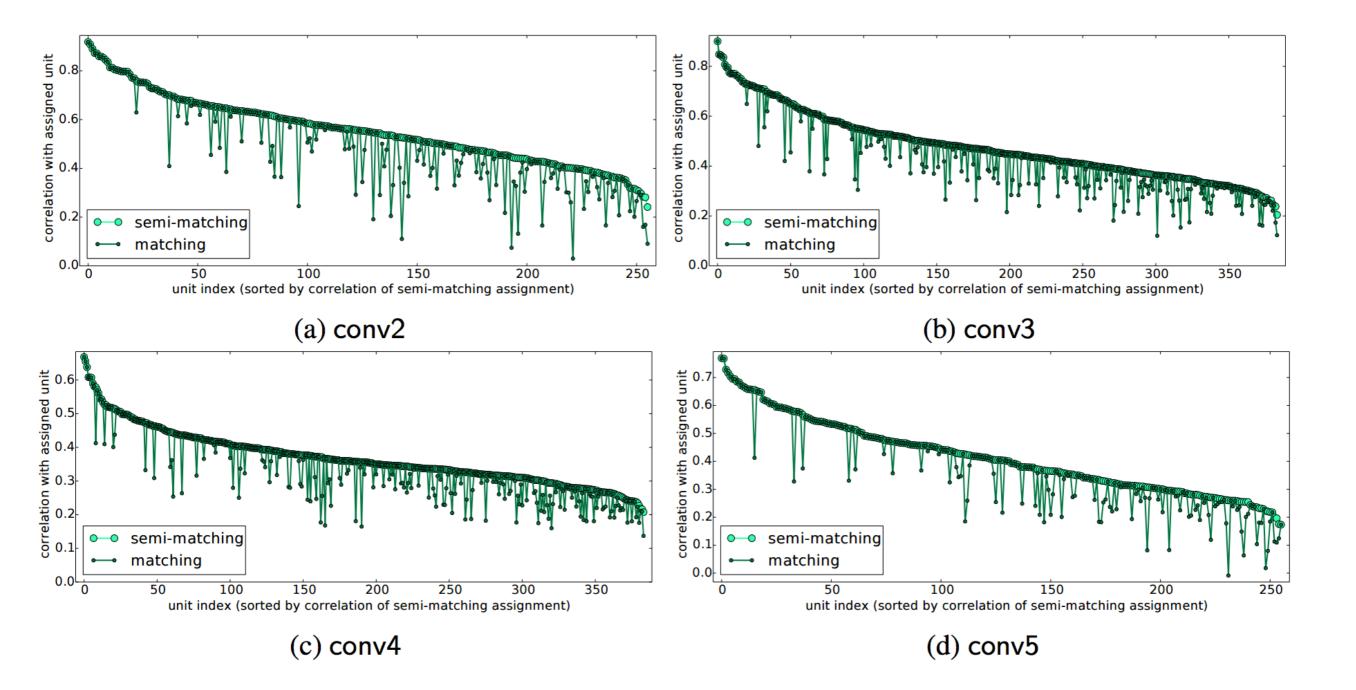


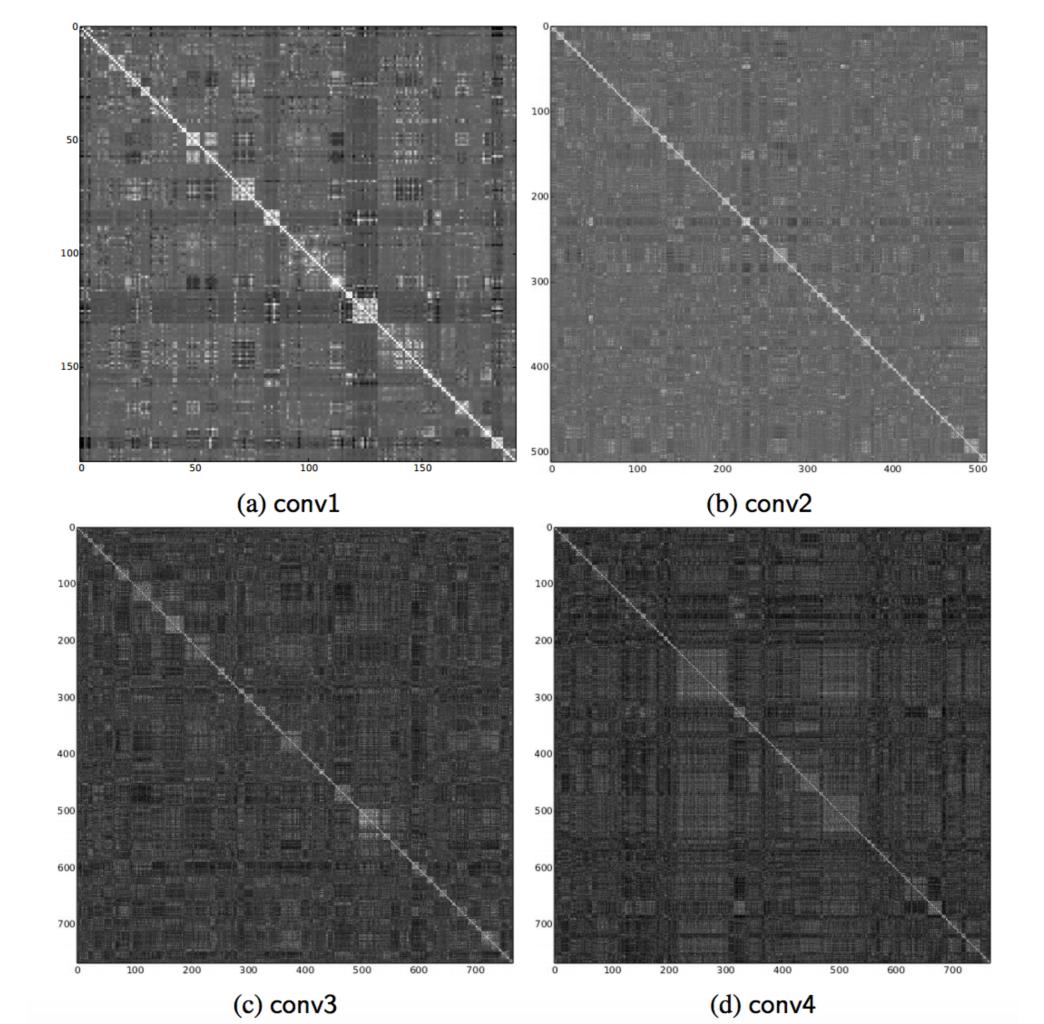
Common filters - chosen by weighted bipartite matching

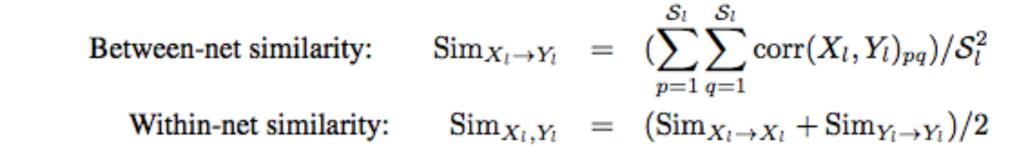




Takeaway: Some units didn't get a match







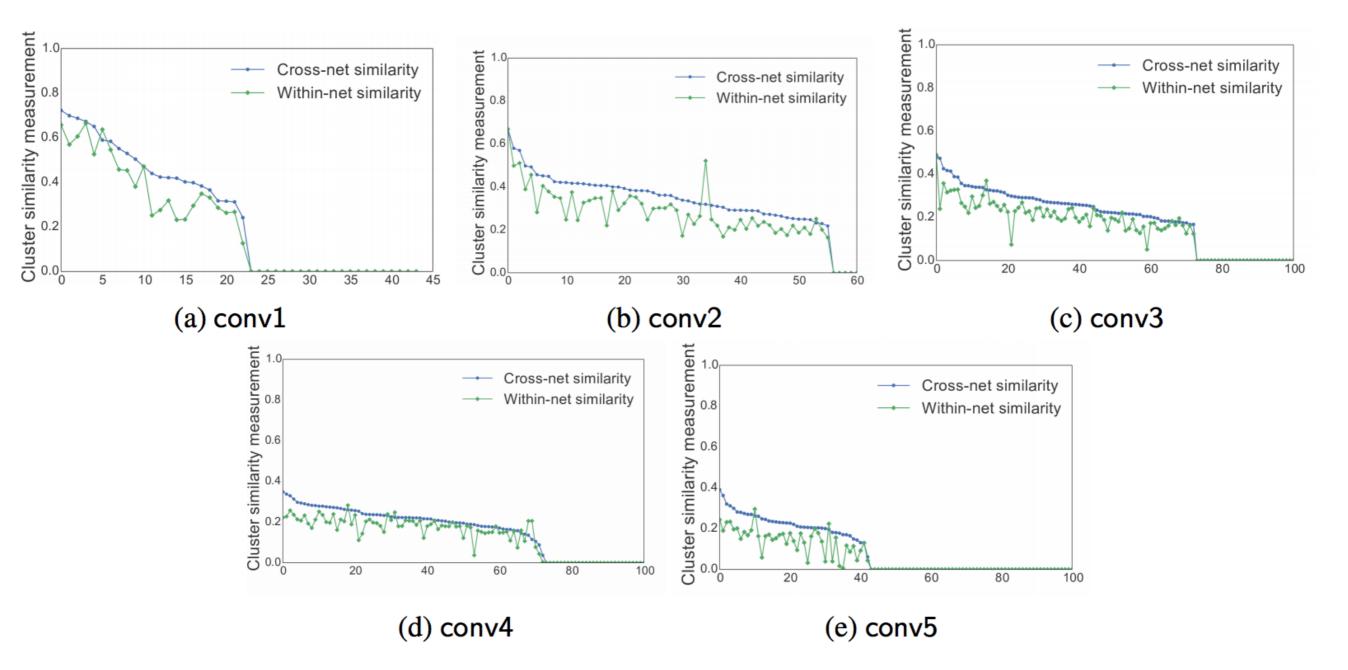


Figure S9: The distribution of between-net and within-net similarity measurement after clustering neurons (conv1 - conv5). The x-axis represents obtained clusters, which is reshuffled according to the sorted between-net similarity value.

Transferring features by 'pre-training'

*side knowledge: layer maximization

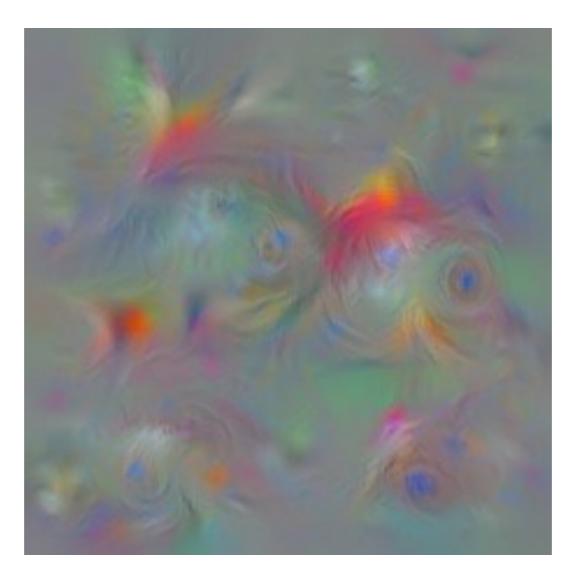
1) Input random noise

2) Maximize (steepest ascent) a chosen layer with respect to input

Result: input image that will maximize a chose layer (aka we see what the layer is "expecting" to see)



Examples

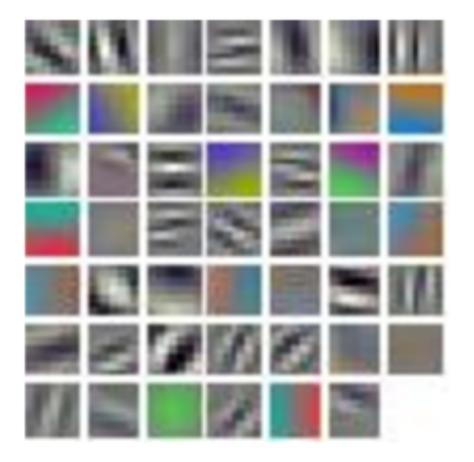


goldfish

Why useful?

Traffic Light DNN classifier

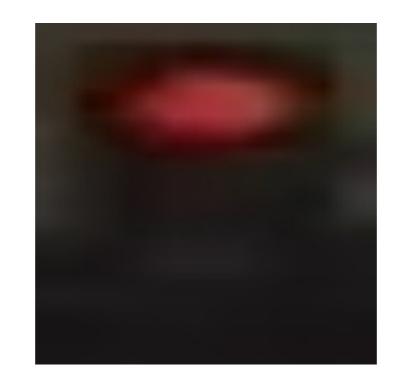
Conv 1 filters



from scratch

pre-trained

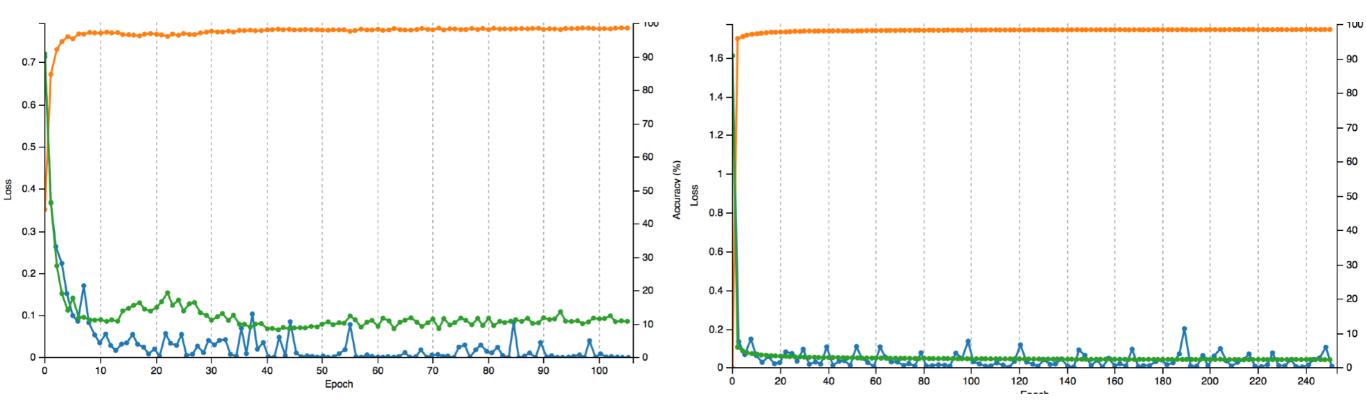
Data Example



Traffic Light?

Essentially, we found a hack

Loss functions



from scratch

pre-trained

'Prob' layer (Traffic Light)

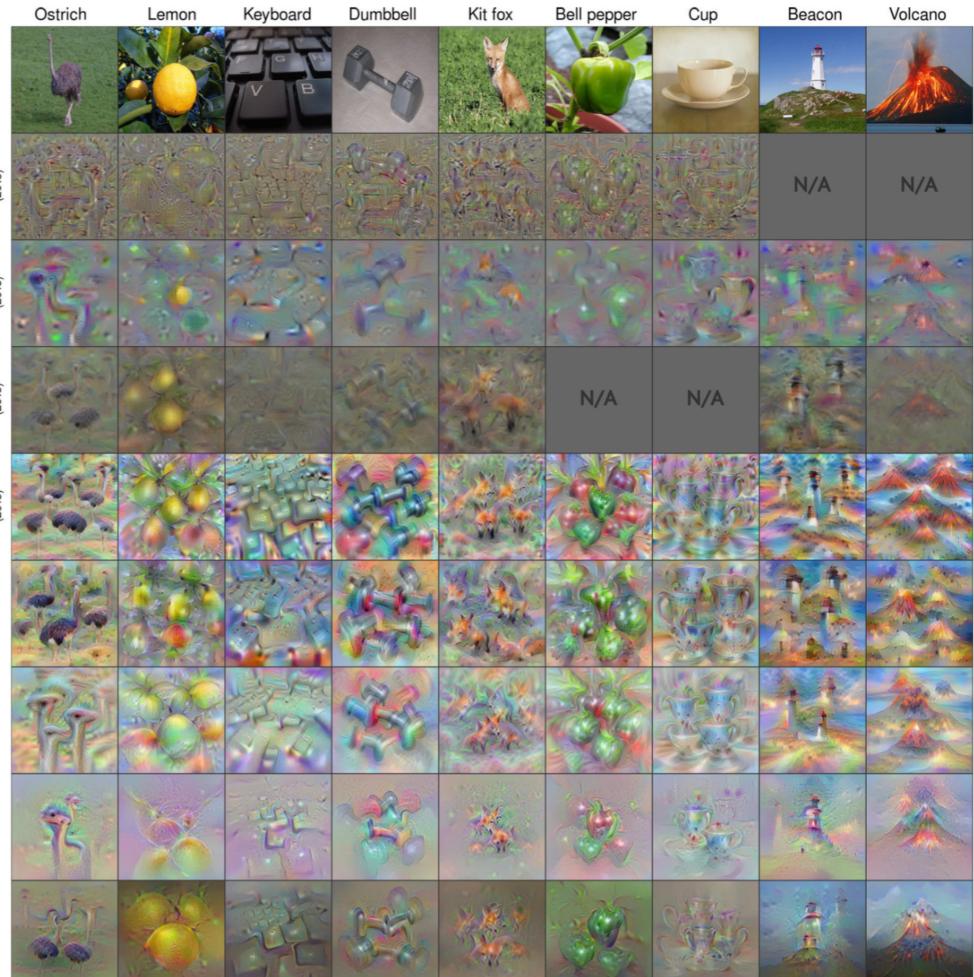
from scratch

pre-trained

In Practice

2.非常常可以是我们的问题,我们的问题,我们是我们的问题,我们就是我们的问题。

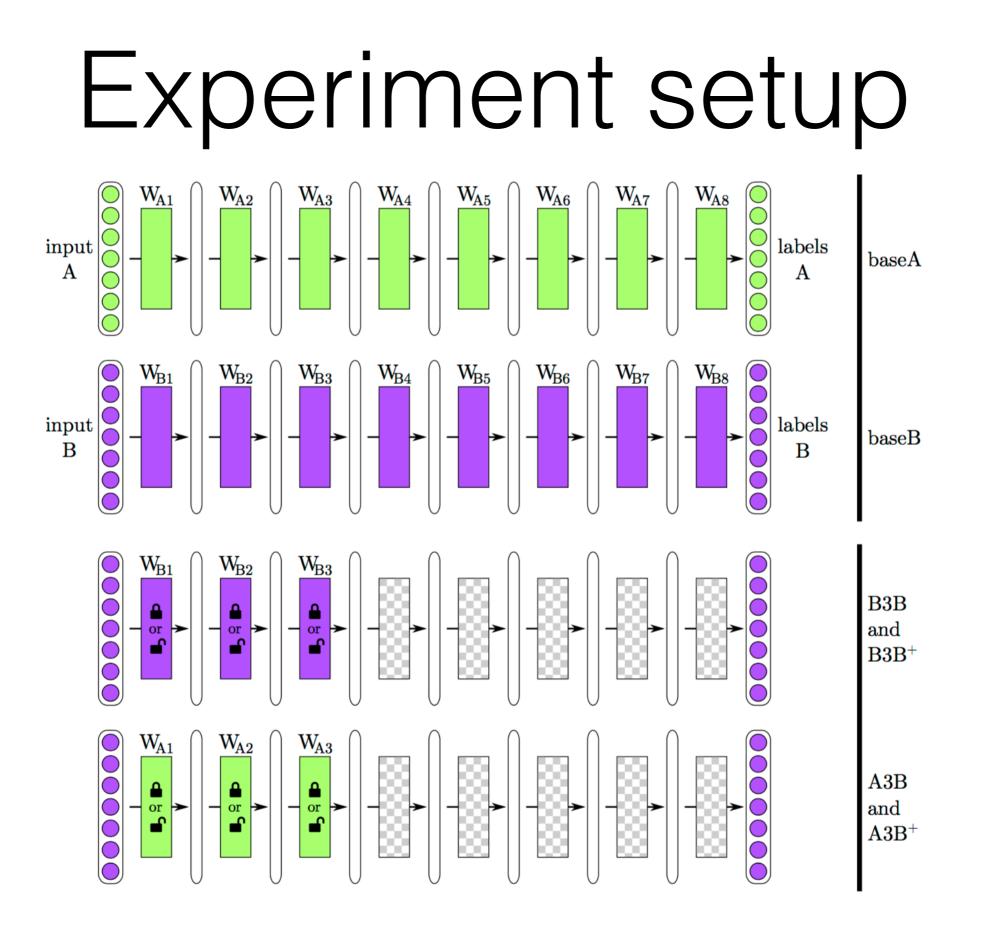
Methods



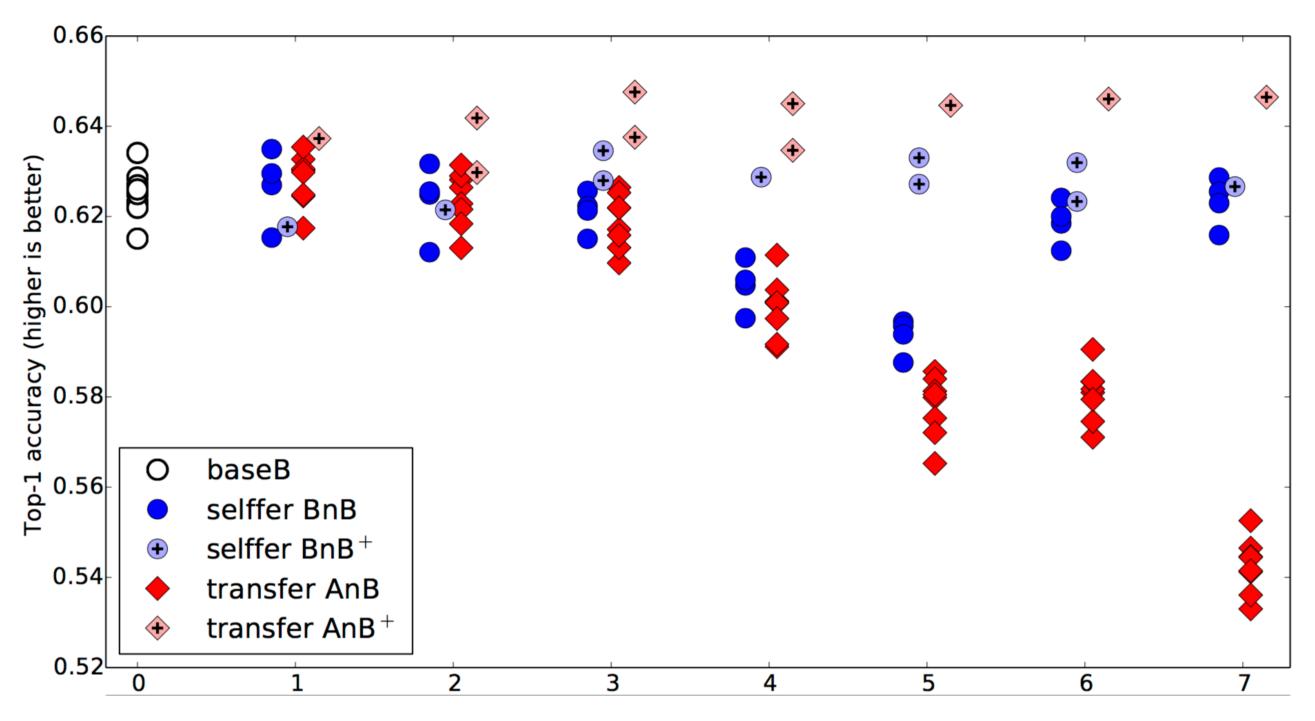
(a) Real images (b) Simonyan et al (2013) (c) Yosinski et al (2015) (d) Wei et al (2015) (e) Mahendran et al (2015) (g) Total variation (h) Blur + Jitter (k) This: Multifaceted (i) This: Center-bias

How transferable are features in deep neural networks?

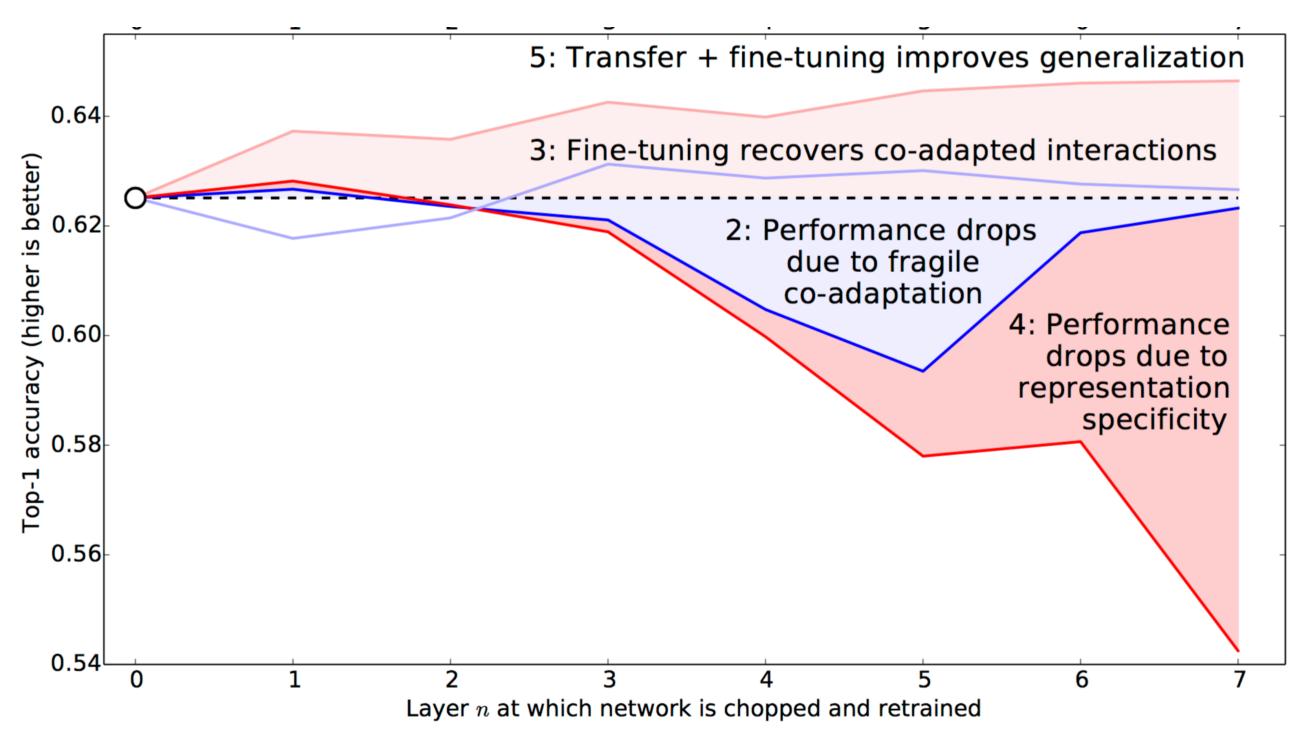
Jason Yosinski,¹ Jeff Clune,² Yoshua Bengio,³ and Hod Lipson⁴ ¹ Dept. Computer Science, Cornell University ² Dept. Computer Science, University of Wyoming ³ Dept. Computer Science & Operations Research, University of Montreal ⁴ Dept. Mechanical & Aerospace Engineering, Cornell University



Where to chop?



Interpretation



Conclusion

- 1) features are difficult to learn from small datasets
- 2) features are transferable
- pre-training is a valid solution to lack of data if task is similar
- 4) layer visualization is a good way to assess DNN quality

